
1 

Distinguishing between early and late covering crops in the land surface model 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Noah-MP: Impact on simulated surface energy fluxes and temperature 

Kristina Bohmab, Joachim Ingwersenb, Josipa Milovacc, Thilo Streckb

a
 previously published under the name Kristina Imukova 

b Institute of Soil Science and Land Evaluation, Department of Biogeophysics, University of 

Hohenheim, 70593 Stuttgart, Germany 

c Institute of Physics and Meteorology, University of Hohenheim, 70593 Stuttgart, Germany 

Corresponding author: Kristina Bohm  

E-Mail: imukovaks@gmail.com

11 

12 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



2 
 

Abstract 13 

Land surface models are essential parts of climate and weather models. The widely used Noah-14 

MP land surface model requires information on the leaf area index (LAI) and green vegetation 15 

fraction (GVF) as key inputs of its evapotranspiration scheme. The model aggregates all 16 

agricultural areas into a land use class termed “Cropland and Pasture”. In a previous study we 17 

showed that, on a regional scale, GVF has a bimodal distribution formed by two crop groups 18 

differing in phenology and growth dynamics: early covering crops (ECC, ex.: winter wheat, 19 

winter rapeseed, winter barley) and late covering crops (LCC, ex.: corn, silage maize, sugar 20 

beet). That result can be generalized for Central Europe. The present study quantifies the effect 21 

of splitting the land use class “Cropland and Pasture” of Noah-MP into ECC and LCC on surface 22 

energy fluxes and temperature. We further studied the influence of increasing the LCC share, 23 

which in the study area (the Kraichgau region, southwest Germany) is mainly the result of 24 

heavily subsidized biomass production, on energy partitioning at the land surface. We used the 25 

GVF dynamics derived from high-resolution (5 m x 5 m) RapidEye satellite data and measured 26 

LAI data for the simulations. Our results confirm that GVF and LAI strongly influence the 27 

partitioning of surface energy fluxes, resulting in pronounced differences between ECC and LCC 28 

simulations. Splitting up the generic crop into ECC and LCC had the strongest effect on land 29 

surface exchange processes in July-August. During this period, ECC are at the senescence 30 

growth stage or already harvested, while LCC have a well-developed, ground-covering canopy. 31 

The generic crop resulted in humid bias, i.e. an increase of evapotranspiration by +0.5 mm d-1 32 

(LE: 1.3 MJ m-2d-1), decrease of H by 1.2 MJ m-2 d-1 and decrease of surface temperature by –33 

1°C. The bias increased as the shares of ECC and LCC became similar. The observed differences 34 

will impact the simulations of processes in the planetary boundary layer. Increasing the LCC 35 

share from 28 to 38% in the Kraichgau region led to a decrease of LE and a heating up of the 36 

land surface in the early growing season. Over the second part of the season, LE increased and 37 

the land surface cooled down by up to 1 °C.  38 

 39 
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1 Introduction 40 

Within weather and climate models, land surface exchange processes are simulated by so-called 41 

land surface models (LSMs). The main role of an LSM is to partition net radiation at the land 42 

surface into sensible heat (H), latent heat (LE) and ground heat (G) fluxes and to determine the 43 

land surface temperature. Surface energy partitioning has a significant influence on the evolution 44 

of the Atmospheric Boundary Layer (ABL). ABL evolution strongly influences the initiation of 45 

convection, cloud formation, and ultimately the location and strength of precipitation (Crawford 46 

et al. 2001, Koster et al. 2006, Santanello Jr. et al. 2013, van Heerwaarden et al. 2009, Milovac et 47 

al. 2016).  48 

 49 

The surface energy partitioning depends on the physical and physiological properties of the land 50 

surface (Raddatz 2007). In LSMs, the earth's surface is subdivided into different land use classes, 51 

among them cropland. Physiological state variables of crops such as green vegetation fraction 52 

(GVF) and leaf area index (LAI) vary significantly throughout the growing season. This alters the 53 

biophysical parameters surface albedo, bulk canopy conductance, and roughness length, leading 54 

to significant changes in surface energy fluxes (Crawford et al. 2001, Ghilain et al. 2012, 55 

Tsvetsinskaya et al. 2001a, Wizemann et al. 2014). In many parts of the world, cropland covers a 56 

considerable part of the simulation domain. Therefore, accurately simulating the seasonal 57 

variability of surface energy fluxes highly depends on an adequate representation of plant growth 58 

dynamics.  59 

 60 

One of the widely used LSMs is Noah-MP. It is usually coupled with the Weather Research and 61 

Forecasting (WRF) model, which is intended for use from the large eddy simulation (LES) scale 62 

up to the global scale. Within each grid cell, Noah-MP computes net longwave radiation as well 63 

as LE, H and G separately for the bare soil and the vegetated tile, whereas short-wave radiation is 64 

computed over the entire grid cell (semi-tile approach; Lhomme and Chehbouni 1999, Niu et al. 65 

2011). Noah-MP collects agricultural areas into only general land use classes such as “Dryland 66 

Cropland and Pasture”, “Irrigated Cropland and Pasture” or “Mixed Dryland/Irrigated Cropland 67 

and Pasture” etc.. Vegetation dynamics and its seasonal development are described in the Noah-68 

MP model by the plant variables GVF and LAI. The surface energy fluxes critically depend on 69 

accurately representing GVF and LAI dynamics (Chen and Xie 2011, Crawford et al. 2001, 70 
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Refslund et al. 2014). In Noah-MP, GVF and LAI are fixed quantities: they do not depend on the 71 

weather conditions during a simulation. GVF is defined as the grid-cell fraction covered by a green 72 

canopy (Gutman and Ignatov 1998). It is a function of the upper canopy (Rundquist 2002) and 73 

represents the horizontal density of vegetation in each grid cell (Gutman and Ignatov 1998). LAI 74 

represents the vertical density of the canopy. Certain biophysical parameters in Noah-MP such as 75 

surface albedo, roughness and emissivity are considered linear functions of LAI.  76 

 77 

By default, Noah-MP derives GVF values from the normalized difference vegetation index 78 

(NDVI) obtained from the NESDIS/NOAA satellite. These data have a resolution of 15 km × 79 

15 km. Due to the mixing of croplands, forest and urban areas, the overall GVF is often positively 80 

biased. Moreover, as shown by Imukova et al. (2015), seasonal GVF data are strongly smoothed 81 

compared to the actual GVF dynamics. Milovac et al. (2016) and Nielsen et al. (2013) found that 82 

the GVF grid data used in Noah-MP LSM are outdated and stated that these should be updated 83 

given their importance for ABL evolution.  84 

 85 

In a previous study, we derived GVF data with a resolution of 5 m x 5 m (Imukova et al. 2015) for 86 

a region in southwest Germany (Kraichgau) using RapidEye satellite data. On the regional scale, 87 

GVF shows a bimodal distribution mirroring the different phenology of crops. Crops could be 88 

grouped into two classes. Early covering crops (ECC), such as winter wheat, winter rape, winter 89 

barley and spring barley, develop early in spring, achieve maximum GVF usually between late 90 

May and mid-June, and become senescent in July. Late covering crops (LCC), such as corn, silage 91 

maize, and sugar beet, are drilled in spring and develop maximum ground-covering canopy from 92 

July to August. They are still green in September, when the ECC are already harvested. The 93 

dynamics of ECC and LCC vary to some degree from season to season and from region to region.  94 

 95 

The shares of ECC and LCC may change over time, often reflecting economic decisions that may 96 

depend on policy interventions. In Germany, a substantial change in these shares was introduced 97 

by subsidizing biogas production. In 2005, 1.7 million ha of maize were cultivated in Germany. 98 

Only 70,000 ha of this area were cropped with silage maize for biogas production (SRU Special 99 

Report 2007). In 2009, the area cropped with maize for biogas production had increased to about 100 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

500,000 ha, while the total maize area remained almost constant (Huyghe et al. 2014). In 2012, 101 

the total acreage of maize had increased to 2.57 million ha with 0.9 million ha intended for biogas 102 

plants. The increase occurred mainly at the expense of grassland. Since then, the total maize crop 103 

area has remained almost constant: 2.6 million ha in 2018 (Fachagentur Nachwachsende Rohstoffe 104 

e. V. 2019). From 2005 to 2018, the maize area in Germany increased by about 53%.  105 

 106 

The objectives of the present study were 1) to elucidate the extent to which surface energy fluxes 107 

simulated with Noah-MP are affected by aggregating early and late covering crops into one generic 108 

cropland class, and 2) to quantify the effect of a land use change, driven by the expansion of maize 109 

cropping as a response to the increasing demand for biogas plants, on energy partitioning and 110 

surface temperature in the Kraichgau region (southwest Germany). 111 

 112 

2 Materials and methods 113 

2.1 Study site and weather data measurements 114 

Noah-MP simulations were performed for the Kraichgau region, which covers about 1500 km2. 115 

Mean annual temperature ranges between 9-10° C and annual precipitation between 730 and 830 116 

mm. The Neckar and Enz rivers form the borders to the east. To the north and south, the region is 117 

bounded by the low mountain ranges Odenwald and Black Forest. In the west, it adjoins the Upper 118 

Rhine Plain (Oberrheinisches Tiefland). Kraichgau has a gently sloping landscape with elevations 119 

between 100 and 400 m above sea level (a.s.l.). Soils predominantly formed from loess material. 120 

The region is intensively used for agriculture: around 46 % of the total area is used for crop 121 

production. Winter wheat, winter rapeseed, spring barley, corn, silage maize and sugar beet are the 122 

predominant crops. 123 

 124 

Weather data used to force the Noah-MP model were acquired at an agricultural field (EC1, 14 ha) 125 

belonging to the farm “Katharinentalerhof”. The field is located north of the city of Pforzheim 126 

(48.920N, 8.700E). The terrain is flat (elevation a.s.l.: 319 m). The predominant wind direction is 127 

south-west. The study site has been described in detail in several studies (Imukova et al. 2015, 128 

Ingwersen et al. 2011, Wizemann et al. 2014). 129 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



6 
 

 130 

An Eddy Covariance (EC) station was operated in the center of the EC1 field. Wind speed and 131 

wind direction were measured with a 3D sonic anemometer (CSAT3, Campbell Scientific, UK) 132 

installed at a height of 3.10 m (2012). Downwelling longwave and downwelling shortwave 133 

radiation were measured with a NR01 4-component sensor (NR01, Hukseflux Thermal Sensors, 134 

The Netherlands). Air temperature and humidity were measured in 2 m height (HMP45C, Vaisala 135 

Inc., USA). All sensors recorded data in 30-min intervals. Rainfall was measured using a tipping 136 

bucket (resolution: 0.2 mm per tip) rain gauge (ARG100, Campbell Scientific Ltd., UK). For 137 

further details about instrumentation and data processing see Wizemann et al. (2014). 138 

 139 

2.2 The Noah-MP v1.1 land surface model  140 

2.2.1 Model parameterization 141 

Multi-physics options of Noah-MP were set as shown in the Table 1. For the simulation we used 142 

the USGS land use dataset. The vegetation type index was set to 2 (Dryland cropland and 143 

Pasture) and soil type index to 4 (Silt loam). The model was forced with half-hourly weather data 144 

(wind speed, wind direction, temperature, humidity, pressure, precipitation, downwelling 145 

longwave and shortwave radiation) measured at EC1 from 2011 to 2013. Simulations were 146 

initialized with a spin up period of one year (2011) and run with a time step of 1800 seconds. 147 
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Table 1. Setting of the multi-physics options used in the Noah-MP simulation. 148 

Multi-physics option Setting 

Vegetation model opt_dveg = 1: prescribed [table LAI, shdfac=FVEG] 

Canopy stomatal resistance opt_crs = 2: Jarvis 

Soil moisture factor for stomatal resistance opt_btr = 1: Noah 

Runoff and groundwater model opt_run = 1: SIMGM 

Surface layer drag coefficient (CH & CM) opt_sfc = 1: based on Monin-Obukhov similarity theory 

Supercooled liquid water opt_frz = 1: NY06 

Frozen soil permeability opt_inf = 1: NY06 

Radiation transfer opt_rad = 3: gap=1—Fveg 

snow surface albedo opt_alb = 2: CLASS 

rainfall & snowfall opt_snf = 1: Jordan91 

lower boundary of soil temperature opt_tbot = 2: Noah 

snow/soil temperature time scheme opt_stc = 1: Semi-implicit 

 149 

 150 

2.2.2 GVF dynamics  151 

The GVF data required by the Noah-MP model were derived from high-resolution (5 m x 5 m) 152 

RapidEye satellite data. As described by Imukova et al. (2015) the GVF data were calculated from 153 

the Normalized Difference Vegetation Index (NDVI) computed from the red and near-infrared 154 

bands of the satellite images. The relationship between GVF and NDVI was established by linear 155 

regression using ground truth measurements. GVF maps were derived in a monthly resolution. 156 
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Table 2. GVF dynamics of early covering crops (ECC) and late covering crops (LCC) in 2012 and 2013 157 
in the Kraichgau region, southwest Germany as well as the GVF dynamics of the generic crop. 158 

GVF  15 Apr 15 May 15 Jun 15 Jul 15 Aug 15 Sep 

GVF 2012 ECC - b 0.74 0.83 0.37 0.01 c 0.01 

 LCC - b 0.01 0.35 0.74 0.69 c 0.56 

GVF 2013 ECC 0.54 0.80 0.57 c 0.29 0.01 0.01 

 LCC 0.01 0.06 0.37 c 0.69 0.74 0.75 

Mean GVF  ECC 0.54 0.77 0.70 0.33 0.01 0.01 

 LCC 0.01 0.04 0.36 0.72 0.72 0.66 

Generic crop GVFa 0.39 0.57 0.60 0.44 0.21 0.19 

a Weighted mean GVF calculated based on fractions of ECC (72%) and LCC (28%) in Kraichgau  
b No RapidEye scenes were available for April 
c No RapidEye scenes were available for these months, GVF values were derived by linear interpolation between adjacent 

months 

 159 

Table 2 shows the observed and mean GVF dynamics of ECC and LCC over the growing seasons 160 

2012 and 2013 as well as the GVF dynamics of the generic crop. The GVF values on the 15th day 161 

of each month, as required by Noah-MP model, were calculated by linearly interpolating the 162 

monthly values derived from the GVF maps. A generic GVF dynamics was calculated as the 163 

weighted mean of ECC and LCC from 2012 and 2013. The areal distribution of ECC and LCC 164 

was determined from the GVF maps of May. All pixels with a GVF value below 0.5 were counted 165 

as LCC, whereas pixels with values above that threshold were assigned to ECC. The estimated 166 

areal distribution of ECC and LCC was 72% and 28%, respectively. These results correspond well 167 

with data of the Statistisches Landesamt Baden-Württemberg (http://www.statistik.baden-168 

wuerttemberg.de/ ). 169 

 170 

2.2.3 LAI dynamics  171 

Noah-MP requires prescribed LAI data for each month. Data were derived from field 172 

measurements. LAI was measured biweekly using a LAI-2000 Plant Canopy Analyzer (LI-COR 173 

Biosciences Inc., USA). In 2012 and 2013, LAI of the crops was measured on five permanently 174 

marked plots of 1 m2 on three different fields. Detailed information about the study plots can be 175 

found in Imukova et al. (2015). In 2009-2011, LAI and the phenological development of the crops 176 
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were measured on five permanently marked plots of 4 m2 in the same three fields. The growth 177 

stages of crops were determined using the BBCH scale (Meier et al. 2009). More details on the 178 

measurements can be found in Ingwersen et al. (2011) and Ingwersen et al. (2015). Table 3 shows 179 

measured and mean LAI dynamics as well as generic LAI dynamics estimated considering shares 180 

of ECC (72%) and LCC (28%) in the study region. LAI dynamics of winter wheat and winter rape 181 

were assigned to ECC, those of maize to LCC. Mean LAI dynamic of ECC was estimated based 182 

on the measurements conducted in winter wheat and winter rape stands during the 2012 and 2013 183 

growing seasons. Since LAI data were not available for maize in 2013, the mean LAI dynamic of 184 

LCC were assessed using field data from the same fields collected in 2009-2012.  185 

Table 3. LAI dynamics of early covering crops (ECC) and late covering crops (LCC) in 2012 and 2013 in 186 
the Kraichgau region, southwest Germany, as well as the LAI dynamics of the generic crop. 187 

Green LAI  15 Apr 15 May 15 Jun 15 Jul 15 Aug 15 Sep 

LAI 2012 ECC 2.4 4.4 4.6 0.0 0.0 0.0 

 LCC 0.0 0.1 0.9 3.2 5.0 3.7 

LAI 2013 ECC 1.7 4.2 4.3 0.0 0.0 0.0 

 LCC b - - - - - - 

Mean LAI ECC 2.1 4.3 4.5 0.0 0.0 0.0 

 LCC c 0.0 0.1 0.9 3.1 4.5 3.8 

Generic crop LAI a 1.5 3.1 3.5 0.9 1.3 1.1 

a Areal weighted average LAI calculated taking into account the spatial distribution of ECC (72%) and LCC (28%) in 

Kraichgau 

b LAI data for maize in 2013 were not measured 

c Since LAI data for maize in 2013 were not available, LAI dynamics were derived from the field data of 2009-2012 for maize 

in the Kraichgau region 

 188 

 189 

2.3 Simulation runs 190 

We firstly quantified the extent to which ECC and LCC differ with regard to their energy and water 191 

fluxes, surface (TS) and soil temperature (TG). For this, we performed one simulation for each 192 

crop group using the mean LAI and the mean GVF dynamics observed during the two growing 193 

seasons (see Table 2 and Table 3). 194 

 195 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



10 
 

Secondly, to determine the effect of splitting up the vegetation dynamics of a generic crop into 196 

that of ECC and LCC, we compared the following two simulation runs: 197 

Run 1: Noah-MP was forced with the GVF and LAI dynamics of the generic crop (Table 2 and 198 

Table 3). Accordingly, in this simulation, we first computed the weighted mean of the vegetation 199 

properties (GVF and LAI), and subsequently simulated the surface energy fluxes, TS and TG. 200 

Run 2: We first simulated the energy and water fluxes for ECC and LCC with their crop-specific 201 

vegetation dynamics, and then used the weighted mean of the two simulations of fluxes and 202 

temperatures. 203 

 204 

Thirdly, we studied the effect of increasing the LCC share on the surface energy fluxes, surface 205 

and soil temperatures. As mentioned in the Introduction, the maize cropping area in Germany 206 

increased by 53% over the last decade. In our study region, this increase corresponds to a rise of 207 

the LCC share from 28% to 38%. To study the effect of this land use change on the Noah-MP 208 

simulations, we performed one additional generic crop simulation, but this time the generic crop 209 

dynamics was computed with a LCC share of 38%. 210 

 211 

3 Results 212 

3.1 ECC vs. LCC 213 

Over the growing season, ECC and LCC show distinct differences with regard to energy 214 

partitioning at the land surface (Figure 1). The observed shifts were strongest for LE and H. Early 215 

covering crops already reached their maximum LE flux in May, after which LE declined during 216 

the growing season. In contrast, LCC showed a continued increase in LE over the season, peaking 217 

three months later in August. The smallest difference in evapotranspiration between both crops 218 

types was on average 0.4 mm day-1 (LE 0.9 MJ m-2day-1) in June, while the largest mean deviation 219 

of -2.3 mm day-1 (LE -5.7 MJ m-2day-1) occurred in August (Table 4). With regard to the H flux, 220 

the situation was opposite (Figure 1). In the case of ECC, H flux increased continuously over the 221 

course of the growing season, peaking in August. In contrast, LCC already reached the H 222 

maximum in May. Afterwards, H decreased continuously until late August. As for LE, the smallest 223 

(-1.2 MJ m-2day-1) and largest (5.3 MJ m-2day-1) mean differences in H between ECC and LCC 224 
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were observed in June and August, respectively (Table 4). Compared with LCC, the higher latent 225 

heat fluxes of ECC in May and June resulted in a cooler land surface, on average by -2.6°C and -226 

1.0°C, respectively (Table 4). From July to August the situation was reversed: because latent heat 227 

fluxes of ECC are distinctly lower than that of LCC, the surface temperature at ECC sites was up 228 

to 4°C warmer than at LCC sites (Figure 2). 229 

 230 

The mean difference in daily ground heat flux between ECC and LCC during the growing season 231 

ranged between -0.2 MJ m-2 and 0.2 MJ m-2 (Table 4). Also for the ground heat flux, the smallest 232 

difference between both crops types was observed in June (0.05 MJ m-2). 233 

Table 4. Mean differences (ECC minus LCC) in latent (LE), sensible (H) and ground heat (G) fluxes, 234 
mean surface temperature (TS) and mean ground temperature (TG) between ECC and LCC simulations. 235 

Month DOY 
LE H 

MJ m-2 d-1 

G 

MJ m-2 d-1 

TS 

°C 

TG 

°C mm d-1 MJ m-2 d-1 

May 121 – 151 1.3 3.3 -3.1 -0.2 -2.6 -2.2 

June 152 – 181 0.4 0.9 -1.2 0.05 -1.0 -0.9 

July 182 – 212 -1.5 -3.8 3.3 0.2 2.1 1.8 

August 213 – 243 -2.3 -5.7 5.3 0.1 3.2 2.4 

September 244 – 273 -0.7 -1.8 2.1 -0.1 1.9 1.2 
DOY -  day of a year 

 236 
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237 

238 

239 
Figure 1. Simulation results of Noah-MP LSM for latent (LE), sensible (H) and ground heat (G) flux. 240 
Simulations were performed for two types of crops: early covering (solid line) and late covering (dashed 241 
line). 242 
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3.2 Run 1 vs. Run 2 (Generic crop vs. weighted mean of ECC and LCC) 254 

The generic crop simulation run (Run 1) generally yielded higher LE fluxes than Run 2 (i.e. 255 

splitting up the generic crop into ECC and LCC) (Figure 3). During the growing season the mean 256 

difference in evapotranspiration between two runs was 0.1 mm day-1 (LE 3.7 MJ m-2day-1) (Table 257 

5). Smallest mean monthly differences occurred in June and September: 0.02 mm day-1 (LE 0.4 MJ 258 

m-2day-1) and 0.03 mm day-1 (LE 1 MJ m-2day-1), respectively. The most pronounced differences 259 

in LE flux were recorded in late July (DOY 197-208) (Figure 4). The average difference in half-260 

hourly fluxes over this period, between 9 a.m. and 6 p.m, was 36 W m-2, and the highest half-261 

hourly deviation between both runs was 83 W m-2 (Figure 4). The highest daily deviation was 0.8 262 

mm day-1 (Figure 3). Over the whole season, the cumulative difference in evapotranspiration 263 

between two runs was 20 mm, leading to a 16 percent lower seasonal water balance (SWB) in Run 264 

1 (SWB: -133 mm) than in Run 2 (SWB: -113 mm). 265 

Table 5. Mean differences in latent (LE), sensible (H) and ground heat (G) fluxes, surface 266 

temperature (TS) and ground temperature (TG) between Run 1 and Run 2 simulations. Numbers 267 

in brackets: the relative difference between Run 1 and Run 2 simulations in percentage. 268 

Month DOY 
LE  H 

MJ m-2 d-1 
G 
MJ m-2 d-1 

TS 

°C 

TG 

°C mm d-1 MJ m-2 d-1 

May 121 – 151 0.1 (3) 0.3 -0.3 (19) -0.003 (1) -0.3 (2) -0.02 (0.1) 

June 152 – 181 0.02 (0.4) 0.04 -0.1 (4) 0.001 (1) -0.1 (1) 0.01 (0.05) 

July 182 – 212 0.3 (7) 0.6 -0.6 (21) -0.016 (4) -0.4 (2) -0.1 (0.6) 

July* 197 – 208 0.5 (14) 1.3 -1.2 (46) -0.034 (10) -1.0 (4) -0.2 (1) 

August 213 – 243 0.2 (7) 0.5 -0.6 (18) 0.004 (2) -0.3 (1) 0.01 (0.03) 

September 244 – 273 0.03 (1) 0.1 -0.2 (5) 0.005 (3) -0.1 (1) 0.1 (0.4) 

Mean  0.1 (3.7) 0.3 -0.4 (13.2) -0.002 (1) -0.2 (1.4) -0.01 (0.1) 

DOY -  day of a year 

 269 

 270 

In contrast, H fluxes of Run 1 were mostly lower over all months than those simulated in Run 2 271 

(Figure 3). From May to September, the mean difference in H fluxes was about -0.4 MJ m-2 (-272 

13 %) (Table 5). The smallest difference occurred again in June, the largest difference again in 273 

late July (Figure 4). During DOY 197-208 the mean differences in half hourly H fluxes was about 274 

-29 W m-2, the peak deviation being -72 W m-2 (9 a.m.-6 p.m) (Figure 4). Cumulating these 275 
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differences over the day reduced the production of sensible heat on average in the order of 276 

1.2 MJ m-2, corresponding to a 46 %reduction compared to Run 2 (Table 5). Ground heat fluxes 277 

as well as soil temperature were affected only moderately by the different vegetation 278 

parameterization of Run 1 and 2 (Figure 4, Figure 3). As for LE and H, the largest mean differences 279 

in G fluxes were observed during DOY 197-208 ( -0.034 MJ m-2 = 10%) (Table 5). 280 

 281 

Due to the humid bias of Run 1, the canopy surface was cooler than in Run 2 in all months. On 282 

average, TS of Run 1 was 0.2 °C (~1.4%) lower during the growing season than in Run 2. In late 283 

July (DOY 197-208) the mean daily difference was -1 °C (Table 5, Figure 3) and reached a daytime 284 

(9a.m.-6p.m.) peak difference of up to -2.6 °C (Figure 4).  285 

 286 
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3.3 Land use change towards LCC 292 

Increasing the LCC fraction from 28% to 38% mainly led to changes in LE and H fluxes (Table 293 

6). That LCC increase lowered the LE flux (-0.3 MJ m-2 day-1-or ET 0.1 mm day-1) early in the 294 

season. This was accompanied by a higher H flux (+0.3 MJ m-2 day-1), which in turn led to a 0.3 295 

°C warmer surface temperature than for the runs with the actual ECC-LCC ratio. From July to 296 

September, increasing the LCC fraction boosted evapotranspiration by about 0.2 mm day-1 (LE 297 

0.4 MJ m-2 day-1) and decreased the H flux by about 0.3 MJ m-2 day-1 (Table 6). The largest half-298 

hourly differences occurred in August (DOY 213-243, Figure 5), amounting to +40 W m-2 299 

and -30 W m-2 for LE and H, respectively. The smallest deviations for both fluxes were recorded 300 

in June. Over the July–September period, the higher LE flux of the simulation run with the 301 

increased LCC fraction cooled the land surface up to -1 °C (Figure 5). In general over the growing 302 

season, increasing the LCC share by 10% led to an increase in cumulative evapotranspiration, 303 

which in turn resulted in a 10 mm lower seasonal water balance (SWB: -143 mm).  304 

 305 

With regard to the ground heat flux, increasing the LCC fraction led to an up to 10 W m-2 higher 306 

flux over the noon time during the second part of the growing season (Figure 5), whereas early in 307 

the season the differences did not exceed 0.2°C (Table 6). 308 

Table 6. Mean differences in latent (LE), sensible (H) and ground heat (G) fluxes, surface temperature 309 

(TS) and ground temperature (TG) between simulations with the LCC fraction increased by 10 % and the 310 

baseline simulation (increased LCC share minus baseline simulation). Numbers in brackets: the relative 311 

difference between increased LCC share and baseline simulation in percentage 312 

Month DOY 
LE H  

MJ m-2d-1 

G  

MJ m-2d-1 

TS  

°C 

TG  

°C mm d-1 MJ m-2d-1 
May 121 - 151 -0.1 (3.3) -0.3 0.3 (14) 0.02 (1) 0.3 (2) 0.2 (1) 

June 152 - 181 -0.04 (1.0) -0.1 0.1 (6) -0.005 (0.5) 0.1 (1) 0.1 (1) 

July 182 - 212 0.2 (4.3) 0.4 -0.3 (12) -0.02 (6) -0.2 (1) -0.2 (1) 

August 213 - 243 0.2 (7.6) 0.6 -0.5 (17) -0.01 (1) -0.3 (2) -0.2 (1) 

September 244 - 273 0.1 (3.8) 0.2 -0.2 (4) 0.01 (4) -0.2 (1) -0.1 (1) 

DOY -  day of a year 

 313 

 314 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



 

1
9

 
 

 
 

 

 
 

 

F
ig

u
re

 5
. 
Im

p
ac

t 
o
f 

in
cr

ea
si

n
g
 t

h
e 

L
C

C
 f

ra
ct

io
n
 f

ro
m

 2
8
%

 t
o
 3

8
%

 o
n

 l
at

en
t 

(L
E

),
 s

en
si

b
le

 (
H

) 
an

d
 g

ro
u
n
d
 h

ea
t 

(G
) 

fl
u
x
es

, 
su

rf
ac

e 
te

m
p
er

at
u
re

 (
T

S
) 

an
d
 

g
ro

u
n
d
 t

em
p
er

at
u
re

 (
T

G
) 

(I
n
cr

ea
se

d
 L

C
C

 s
h
a
re

 m
in

u
s 

b
a
se

li
n
e 

si
m

u
la

ti
o
n
).

 

3
1

5
 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



 

20 
 

4 Discussion 316 

The comparison of the ECC and LCC simulations confirmed that GVF and LAI significantly affect 317 

the partitioning of surface energy fluxes. LE flux increases with crop growth and peaks when the 318 

canopy is fully developed, i.e. have maximum LAI and GVF. By contrast, the highest H and G 319 

fluxes were observed at sparsely covered fields or on the fields with a senescent canopy. During 320 

the main growth period of crops, H and G fluxes were quite low. ECC and LCC crops vary 321 

significantly in sowing and harvest date, leaf area and senescence dynamics, water use efficiency 322 

and phenology. Their surface energy fluxes therefore differ distinctly. Our simulation results are 323 

in agreement with experimental data of Wizeman et al. (2014) as well as with modeling studies of 324 

Sulis et al. (2015), Tsvetsinskaya et al. (2001b), Xue et al. (1996) or Ingwersen et al. (2018).  325 

 326 

The potential increase of the LCC fraction (driven by the high demand for biogas and forage 327 

production) leads to significant changes in the partitioning of the energy fluxes at the croplands. 328 

In recent years the total area under maize in Germany has more than doubled. This corresponds to 329 

an approximately 10% increase of the LCC fraction for the study region. In the early vegetation 330 

period, the altered ECC-LCC ratio leads to a decrease of evapotranspiration, an increase of H 331 

fluxes, and a warmer cropland surface because, during that period, a higher fraction of fields is 332 

bare or sparsely covered with vegetation. In mid-June, the situation reverses. The higher share of 333 

LCC boosts LE fluxes, decreases H fluxes and lowers surface temperatures. The increased 334 

evapotranspiration over the growing season, in turn, leads to a lower seasonal water balance. 335 

 336 

Comparing the generic crop simulation (Run 1) with the weighted mean of two separate 337 

simulations for ECC and LCC (Run 2) showed the largest difference over the second half of the 338 

growing season, particularly during late July/early August. In July, ECC become senescent: GVF 339 

drops sharply and green LAI equals zero. In early August, ECC are usually harvested. In contrast, 340 

LCC have a developed ground-covering canopy during July-August. Leaves of these crops are still 341 

green in September. This transition period is very smooth in the case of the generic crop, resulting 342 

on average in about 14 % higher LE and in about 46%, 10% and 4% lower H, G and surface 343 

temperature, respectively, compared with Run 2.  344 

 345 
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The results presented above apply to the ECC-LCC ratio within our study area. What can we expect 346 

in agricultural landscapes with different ECC-LCC ratios? The ECC-LCC ratio has nearly no effect 347 

on energy partitioning in June, whereas in May, July and August its influence on the turbulent 348 

fluxes is pronounced (Figure 6). The weak effect in June is because, during this period, the LAI 349 

and GVF of ECC and LCC are similar (Figure 8). In the other months, however, the ECC-LCC 350 

ratio heavily affects the energy partitioning. For example, increasing the LCC share from 10% to 351 

90% boosts daily evapotranspiration in August from 2.5 mm d-1 to 4.3 mm d-1, decreases the H 352 

flux by about 4.1 MJ m-2 d-1 and cools down the cropland surface by 2 °C. Over the growing season, 353 

the increase in the LCC share leads to a general increase in evapotranspiration, which in turn 354 

lowers the seasonal water balance (Table 7). Moreover, different ECC-LCC ratios will also affect 355 

the above-mentioned humid bias of the generic crop parameterization (Figure 7). The bias is largest 356 

if ECC and LCC shares are balanced (ECC 50% and LCC 50 %), whereas combinations with one 357 

predominant crop distinctly lower the bias. In August, for instance, the LE differences between the 358 

two runs with ECC 50%- LCC 50% equal 0.27 mm day-1, while ECC 10%- LCC 90 % yields 359 

differences of 0.09 mm day-1.  360 

Table 7. Weather data and simulation results of Noah-MP LSM for cumulative evapotranspiration for the 361 

Kraichgau region. Simulations were performed considering different shares of early covering crops 362 

(ECC) and late covering crops (LCC). 363 

ECC and LCC shares 
Total  

rainfall (R), mm 

Cumulative 

evapotranspiration (ET), mm 

Seasonal water  

balance (R-ET), mm 

ECC 90% LCC 10% 388 496 -108 

ECC 70% LCC 30% 388 522 -134 

ECC 50% LCC 50% 388 544 -156 

ECC 30% LCC 70% 388 557 -169 

ECC 10% LCC 90% 388 563 -175 

 364 

https://doi.org/10.5194/bg-2019-453
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



 

22 
 

 365 

Figure 6. Simulation results of Noah-MP LSM for latent (LE) and sensible (H) heat flux. Simulations 366 
were performed considering different shares of ECC and LCC. 367 
 368 

 369 

Figure 7. Differences in latent (LE) and sensible heat (H) fluxes between Run 1 and Run 2 simulations 370 
(Run 1 - Run 2). Simulations were performed considering different shares of ECC and LCC. 371 
 372 

 373 

Figure 8. GVF and LAI dynamics of early covering crops (ECC), late covering crops (LCC) and 374 
Cropland. 375 
 376 
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Our results show that performing simulations based on single dynamics for each type of crop (ECC 377 

and LCC) improve simulations of surface fluxes during transition periods and at the end of the 378 

growing season. Lumping ECC and LCC into one land-use class (Croplands and Pasture), as done 379 

in Noah-MP, is an oversimplification. Several authors demonstrated the necessity to distinguish 380 

biophysical plant parameters between substantially different crops to obtain representative 381 

simulation results in the lower atmosphere (Sulis et al. 2015, Tsvetsinskaya et al. 2001b, Xue et 382 

al. 1996). They showed that high-resolution spatial information on various croplands and 383 

associated physiological characterizations can significantly improve the simulations of land 384 

surface energy fluxes, leading to better weather and climate predictions. 385 

 386 

Changes of LAI and GVF with plant growth lead to changes in surface albedo, bulk canopy 387 

conductance and roughness length, which in turn alter the partitioning of surface energy fluxes 388 

(Chen and Xie 2011, Chen and Xie 2012, Crawford et al. 2001, Tsvetsinskaya et al. 2001a, Xue et 389 

al. 1996). Such altered energy partitioning at the land surface then changes the thermodynamic 390 

state of the atmospheric boundary layer withregard to air temperature, surface vapor pressure, 391 

relative humidity and finally rainfall (Chen and Xie 2012, McPherson and Stensrud 2005, Sulis et 392 

al. 2015, Tsvetsinskaya et al. 2001b). The observed differences between Run 1 and crop-type-393 

based runs will most probably influence the simulated processes in the ABL. For instance, Sulis 394 

et al. (2015) significantly improved the simulations of land surface energy fluxes by using the 395 

crop-specific physiological characteristics of the plant. They observed a difference of about 40% 396 

between simulated fluxes using the generic and crop-specific parameter sets. The differences in 397 

the land surface energy partitioning led to different heat and moisture budgets of the atmospheric 398 

boundary layer for the generic and specific (sugar beet and winter wheat) croplands. In the case of 399 

specific croplands, particularly sugar beet, those authors observed a larger contribution of the 400 

entrainment zone to the heat budget of the ABL as well as a shallower ABL.  401 

 402 

McPherson and Stensrud (2005) examined the impact of directly substituting the tallgrass prairie 403 

land use class with winter wheat on the formation of the ABL. These crops have different growing 404 

seasons. In the U.S. Great Plains, native prairie tallgrass mainly grows in summer, while winter 405 

wheat grows throughout winter and reaches maturity in late spring. Simulations showed a larger 406 

LE and lower H over the area with the winter wheat stand in comparison with tallgrass. By 2100 407 
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UTC, LE ranged from 300 to 400 W m -2 for the wheat run and from 200 to 275 W m -2 for the 408 

tallgrass run. H ranged from 25 to 125 W m -2 for the former and from 100 to 200 W m -2 for the 409 

latter. Substituting tallgrass prairie with winter wheat boosted the atmospheric moisture near the 410 

surface above- and downstream of the study area, and resulted in a shallower ABL above- and 411 

downstream of this area. The shallower ABL reduced the entrainment of higher-momentum air 412 

into the ABL and therefore led to weaker winds within the ABL. 413 

 414 

Milovac et al. (2016) performed six simulations at 2 km resolution with two local and two nonlocal 415 

ABL schemes combined with two LSMs (Noah and Noah-MP) to study the influence of energy 416 

partitioning at the land surface on the ABL evolution on a diurnal scale. They observed that LE 417 

simulated by Noah-MP was more than 50% lower than that simulated by Noah. As expected, a 418 

lower LE resulted in a drier ABL. The ABL evolution and its features strongly influence the 419 

initiation of convection and cloud formation as well as the location and strength of precipitation. 420 

For instance, drier and higher ABL would yield a higher lifting condensation level, leading to 421 

higher clouds and a higher probability of convective precipitation. 422 

 423 
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5 Conclusions 424 

GVF and LAI significantly affect the simulation of energy partitioning, yielding pronounced 425 

differences between ECC and LCC. In our study area, the use of a generic crop parameterization 426 

(Croplands and Pasture in Noah-MP) resulted in a humid bias along with lower surface 427 

temperatures. This humid bias will be largest in landscapes with a balanced share of ECC and 428 

LCC, whereas in landscapes in which one of the two crop types predominate, the bias will be 429 

weaker. We observed the strongest effects on turbulent fluxes over the second part of the season, 430 

particularly in July-August. During this period, ECC are at senescence growth stage or already 431 

harvested, while LCC have a fully developed ground-covering canopy. We therefore expect that 432 

the observed differences will impact the simulation of processes in the ABL. Our results show that 433 

splitting up croplands into ECC and LCC can improve LSMs, particularly during transition periods 434 

and late in the growing season. 435 

 436 

Increasing the LCC fraction by 10% reduces evapotranspiration and increases surface temperatures 437 

over the first part of the growing season. Later in the season, this land use change leads to the 438 

opposite situation: increased evapotranspiration accompanied by a slight cooling of the land 439 

surface. Over the growing season, an increase of the LCC share by 10% leads to higher cumulative 440 

evapotranspiration, which in turn lowers the seasonal water balance. 441 

 442 
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